Subspace Codes

نویسندگان

  • Azadeh Khaleghi
  • Danilo Silva
  • Frank R. Kschischang
چکیده

This paper is a survey of bounds and constructions for subspace codes designed for the injection metric, a distance measure that arises in the context of correcting adversarial packet insertions in linear network coding. The construction of lifted rank-metric codes is reviewed, along with improved constructions leading to codes with strictly more codewords. Algorithms for encoding and decoding are also briefly described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

Packing and Covering Properties of CDCs and Subspace Codes

Codes in the projective space over a finite field, referred to as subspace codes, and in particular codes in the Grassmannian, referred to as constant-dimension codes (CDCs), have been proposed for error control in random network coding. In this paper, we first study the covering properties of CDCs. We determine some fundamental geometric properties of the Grassmannian. Using these properties, ...

متن کامل

Construction of subspace codes through linkage

A construction is presented that allows to produce subspace codes of long length using subspace codes of shorter length in combination with a rank metric code. The subspace distance of the resulting code, called linkage code, is as good as the minimum subspace distance of the constituent codes. As a special application, the construction of the best known partial spreads is reproduced. Finally, ...

متن کامل

Optimal subspace codes in ${\rm PG}(4,q)$

We investigate subspace codes whose codewords are subspaces of PG(4, q) having non– constant dimension. In particular, examples of optimal mixed–dimension subspace codes are provided, showing that Aq(5, 3) = 2(q 3 + 1).

متن کامل

On cardinality of network subspace codes

We analyze properties of different subspace network codes. Our study includes Silva-Koetter-Kshishang codes (SKK-codes), multicomponent codes with zero prefix (Gabidulin-Bossert codes), codes based on combinatorial block designs, Etzion-Silberstein codes (E-S codes) based on Ferrer’s diagrams, and codes which use greedy search algorithm and restricted rank codes. We calculate cardinality values...

متن کامل

On the Decoder Error Probability of Rank Metric Codes and Constant-Dimension Codes

Rank metric codes can either be used as such for error correction in data storage equipments, or be lifted into constant-dimension codes (CDCs) and thus be used for error correction in random network coding. This paper investigates the decoder error probability (DEP) of rank metric codes and CDCs. We first study the DEP of rank metric codes using a bounded rank distance decoder. We derive asymp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009